National Exams December 2019

16-Elec-B5, Advanced Electronics

3 hours duration

Notes:

- 1. If any doubt exists as to the interpretation of any question, the candidate is urged to submit, within their answer, a clear statement of any assumptions made.
- 2. This is a **CLOSED BOOK EXAM**.
 A Casio or Sharp approved calculator is permitted.
- 3. Answer all **FIVE** (5) questions.
- 4. All questions are worth 20 marks each.
- 5. Please start each question on a new page and clearly identify the question number and part number, e.g. Q4(a).
- 6. In schematics, ground and chassis may be assumed to be common, unless specifically stated otherwise.
- 7. Unless otherwise specified, assume that Op-Amps are ideal and that supply voltages are ±15V.
- 8. If questions require an answer in essay format, clarity and organization of the answer are important. Provide block diagrams and circuit schematics whenever necessary.

QUESTION (1)

This differential amplifier uses a bias current of $I_{bias} = 20 \mu A$

The two MOS transistors have $V_{TH} = 1 \text{ V}$, $W/L = 120 \text{ }\mu\text{m}/\text{ }6 \text{ }\mu\text{m}$, and $\mu C_{ox} = 20 \text{ }\mu\text{A}/\text{V}^2$

- a) Find the values for V_{GS1} , V_{GS2} , g_{m1} , g_{m2} and the differential input voltage $v_{ID} = v_{I1} v_{I2}$ that will cause full current switching (i.e. when either I_1 or I_2 becomes zero). (10 points)
- b) If there is a 2% mismatch between R_{D1} and R_{D2} , what will be the input offset voltage? (6 points)
- c) If there is a 2% mismatch in the threshold voltage between M_1 and M_2 , what will be the input offset voltage? (4 points)

Useful formulae: for n-channel MOSFET

$$\begin{split} i_{DS} &= K \bigg[(v_{GS} - V_{TH}) v_{DS} - \frac{1}{2} v_{DS}^2 \bigg] & \text{triode region} \\ i_{DS} &= \frac{1}{2} K \left(v_{GS} - V_{TH} \right)^2 \left(1 + \lambda v_{DS} \right) & \text{saturation region} \\ V_{ov} &= V_{GS} - V_{TH} & \text{overdrive voltage} \end{split}$$

where
$$K = K' \left(\frac{W}{L} \right) = \mu C_{ox} \left(\frac{W}{L} \right)$$

$$V_A = \frac{1}{\lambda}, \text{ and } V_A = V_A' L, r_o = \frac{1}{\lambda I_D}$$

QUESTION (2)

In this common source amplifier, determine the mid-band gain, and also the values of the coupling capacitors, C_{C1} , C_{C2} , and C_S such that the low frequency response is dominated by a pole at 100 Hz and the nearest pole or zero will be at least one decade away. (20 points)

Note: you can ignore the high frequency equivalent circuit model for M_1 . (i.e. $C_{gs1} = C_{gd1} = 0$)

QUESTION (3)

For this class B output stage, determine

a) The maximum RMS output power.

(4 points)

- b) The RMS power dissipated by M1 under maximum output power. (8 points)
 - (8 points)

c) The power efficiency, η of this output stage.

Given:
$$\beta$$
= 50,
 $V_{BE,on}$ = 0.7 V,
 R_L = 8 Ω
 $|V_{CC}|$ = $|V_{EE}|$ = 20 V.

QUESTION (4)

Assuming that the op amp is ideal, derive the relationship between *vout* and *viv*. Please note that this circuit behaves differently for positive and negative input voltages. (20 points)

QUESTION (5)

In the following is a common gate (CG) amplifier with a feedback network consisting of R_1 and R_2 . Given $R_D = 2 \text{ k}\Omega$, $V_{DD} = 10 \text{ V}$, $-V_{SS} = -10 \text{ V}$, $I_{bias} = 2 \text{ mA}$, and the transistor parameters as $K = 1 \text{ mA/V}^2$, $V_{TH} = 1 \text{ V}$, and $\lambda = 0$,

a) Determine the input and output resistance (R_{IN} and R_{OUT}) if there is no feedback network (i.e. $R_1 = \infty$, and $R_2 = 0$ Ω).

(8 points)

b) Derive the input and output resistance (R_{IN} and R_{OUT}) if for $R_1 = 200 \text{ k}\Omega$ and $R_2 = 100 \text{ k}\Omega$.

(12 points)