National Exams December 2015

07-Elec-B5, Advanced Electronics

3 hours duration

Notes:

1. If any doubt exists as to the interpretation of any question, the candidate is urged to submit, within their answer, a clear statement of any assumptions made.
2. This is a CLOSED BOOK EXAM.

Any non-communicating calculator is permitted.
3. Answer all FIVE (5) questions.
4. All questions are worth 20 marks each.
5. Please start each question on a new page and clearly identify the question number and part number, e.g. Q4(a).
6. In schematics, ground and chassis may be assumed to be common, unless specifically stated otherwise.
7. Unless otherwise specified, assume that Op-Amps are ideal and that supply voltages are $\pm 15 \mathrm{~V}$.
8. If questions require an answer in essay format, clarity and organization of the answer are important. Provide block diagrams and circuit schematics whenever necessary.

QUESTION (1)

This series voltage regulator has the following component values and device characteristics:

Op amp, A_{1} is ideal
$\beta=100, V_{B E}=0.7 \mathrm{~V}, V_{T}=25 \mathrm{mV}$ and
$V_{A}=100 \mathrm{~V}$ for Q_{1}
$V_{Z}=6.7 \mathrm{~V}$ at $I_{Z}=1 \mathrm{~mA}, R_{Z}=10 \mathrm{k} \Omega$ for D_{1}.
$R_{1}=3.3 \mathrm{k} \Omega$
$R_{L}=4 \Omega$
a) Given $V_{D D}=10 \mathrm{~V}$, what is the nominal output voltage, $V_{O U T}$?
b) If $V_{D D}$ has a 1 V p-p ripple, what will be the ripple voltage at the output?
c) Find the power efficiency, η of this voltage regulator.

QUESTION (2)

In the following circuit, assume that $\beta=100, V_{B E}=0.7 \mathrm{~V}, V_{C E(s a t)}=0.3 \mathrm{~V}, V_{A}=100 \mathrm{~V}, C_{\mu}=2 \mathrm{pF}$ for all transistors. Neglect r_{x} and r_{o} in the hybrid $-\pi$ model.

Given: $R_{L}=5 \mathrm{k} \Omega$
$R_{1}=1 \mathrm{k} \Omega$
$C_{1}=5 \mu \mathrm{~F}$
$C_{2}=\infty$
$\left|V_{C C}\right|=\left|V_{E E}\right|=10 \mathrm{~V}$
$I_{\text {bias }}=1 \mathrm{~mA}$
$V_{T}=25 \mathrm{mV}$
a) Estimate the mid-band gain $v_{\text {OUT }} / v_{S}$ in (V/V).
(4 points)
b) Find the lower 3 dB frequency f_{L} in (Hz).
(4 points)
c) Find the upper 3 dB frequency f_{H} in (Hz).
(6 points)
d) Find the $2^{\text {nd }}$ high frequency dominant pole in (Hz).

QUESTION (3)

In the following tuned amplifier circuit, the transistor M_{1} is biased such that $V_{D D}=10 \mathrm{~V}$. The transistor parameters are given as $K=1 \mathrm{~mA} / \mathrm{V}^{2}, V_{T H}=1 \mathrm{~V}, C_{g s}=10 \mathrm{pF}, C_{g d}=1 \mathrm{pF}$, and $\lambda=0$.

For: $L_{I}=1 \mu \mathrm{H}$

$$
\begin{aligned}
& C_{1}=200 \mathrm{pF}, C_{2}=\infty \\
& R_{S}=1 \mathrm{k} \Omega, R_{L}=2 \mathrm{k} \Omega \\
& I_{\text {bias }}=2 \mathrm{~mA} .
\end{aligned}
$$

a) What is the center frequency, ω_{o} of this amplifier?
(4 points)
b) What is the gain $v_{\text {OUT }} / v_{S}$ at $\omega=\omega_{o}$? (8 points)
c) What is the 3 dB bandwidth of this tuned amplifier?
(8 points)

QUESTION (4)

Consider the following amplifier with a feedback circuit.

Given: $R_{D}=3 \mathrm{k} \Omega, C_{1}=\infty, R_{2}=20 \mathrm{k} \Omega$

$$
\begin{aligned}
& \left|V_{C C}\right|=\left|V_{E E}\right|=10 \mathrm{~V} \\
& I_{\text {bias }}=1 \mathrm{~mA} \\
& K=1 \mathrm{~mA} / \mathrm{V}^{2}, V_{T H}=1 \mathrm{~V}, \text { and } \lambda=0
\end{aligned}
$$

a) Determine the input and output resistance ($R_{I N}$ and Rout) if there is no feedback network (i.e. $R_{1}=\infty$).
(8 points)
b) Determine the input and output resistance ($R_{I N}$ and Rout) if $R_{1}=100 \mathrm{k} \Omega$.
(12 points)

Elec-B5, Advanced Electronics

QUESTION (5)

The following common source amplifier is already biased properly.

Given:

$g_{m}=2 \mathrm{~mA} / \mathrm{V}$	$r_{o}=20 \mathrm{k} \Omega$
$R_{i}=20 \mathrm{k} \Omega$	$R_{L}=20 \mathrm{k} \Omega$
$R_{S}=1 \mathrm{k} \Omega$	
$C_{g s}=20 \mathrm{fF}$	$C_{g d}=5 \mathrm{fF}$
$C_{L}=5 \mathrm{fF}$	$C_{1}=\infty$
$C_{2}=\infty$	

d) Find the mid-band voltage gain $\operatorname{vout} / v_{i}$.
(6 points)
e) What is the new mid-band voltage gain, vout $/ v_{i}$ if capacitor C_{2} is removed?
f) What is the new 3 dB frequency f_{H} if capacitor C_{2} is removed?

